
19951228 044

pEjj5^ '

II \>r^

i^ELEGTE
1 i m

1JAN 0 3 19961 I w
p

D1BTOI3UTIOW STATEMENT K

Approved icn public teleoMl

RAND

T/ie RAND Metadata
Management System
(RMMS)
A Metadata Storage Facility to
Support Data Interoperability,
Reuse, and Sharing

Stephanie Cammarata, Iris Katneny,
Judy Lender, Corinne Replogle

National Defense Research Institute
Arroyo Center

Project AIR FORCE

Bfäß QUAMKf IWSPBCffiD 1

The research described in this report was conducted in RAND's three federally

funded research and development centers: The National Defense Research

Institute, sponsored by the Office of the Secretary of Defense and the Joint

Staff; the Arroyo Center, sponsored by United States Army; and Project AIR

FORCE, sponsored by the United States Air Force.

Library of Congress Cataloging in Publication Data

The RAND Metadata Management System (RMMS): a metadata
storage facility to support data interoperability, reuse, and sharing /
Stephanie Cammarata ... [et al.].

p. cm.
"Prepared for the Office of the Secretary of Defense, The United

States Army, and the United States Air Force."
"MR-163-OSD/A/AF."
Includes bibliographical references.
ISBN0-8330-1515-X
1. Database management. 2. Database design. 3. Ingres

(Computer file). I. Cammarata, Stephanie. . II. United States.
Dept. of Defense. Office of the Secretary of Defense.
III. United States. Army. IV. United States. Air Force.
QA76.9.D3R247 1994
005.74'2—dc20 94-6663

CIP

© Copyright 1995 RAND

All rights reserved. No part of this book may be reproduced in any form by

any electronic or mechanical means (including photocopying, recording, or

information storage and retrieval) without permission in writing from RAND.

RAND is a nonprofit institution that helps improve public policy through
research and analysis. RAND's publications do not necessarily reflect the

opinions or policies of its research sponsors.

Published 1995 by RAND

1700 Main Street, P.O. Box 2138, Santa Monica, CA 90407-2138

RAND URL: http://www.rand.org/

To order RAND documents or to obtain additional information, contact Distribution

Services: Telephone: (310) 451-7002; Fax: (310) 451-6915; Internet: order@rand.org

Accesion For

DT IC TAB
Unannounced
Justification

By
Distribution/

G
D

Availability Codes

Dist

M

Avail and/or
Special

National Defense Research Institute
Arroyo Center

Project AIR FORCE

RAND

The RAND Metadata
Management System
(RMMS)
A Metadata Storage Facility to
Support Data Interoperability,
Reuse, and Sharing

Stephanie Cammarata, Iris Kameny,
Judy Lender, Corinne Replogle

Prepared for the
Office of the Secretary of Defense
United States Army
United States Air Force

Approved for public release; distribution unlimited

Preface

This report discusses the results from a set of meetings held to design a
repository system that stores descriptional and definitional information about
databases (maintained in INGRES), models, and procedures supported by
RAND's Military Operations Simulation Facility (MOSF). The resulting design,
the RAND Metadata Management System (RMMS), is composed of its own
INGRES database tables, called the "Data Encyclopedia" tables, which
collectively maintain data about general characteristics of each of the individual
INGRES databases. In addition, there are a set of INGRES tables, called the
"Data Dictionary" tables, which augment each separate INGRES database and
provide more detailed information about the contents of the database. This
report describes the RMMS design. Implementation of the RMMS (based on this
design) is an ongoing activity conducted by MOSF data and system
administrators.

This research support activity was sponsored through RAND's three federally
funded research and development centers—the National Defense Research
Institute (sponsored by the Office of the Secretary of Defense, the Joint Staff, and
the defense agencies), the Arroyo Center (sponsored by the U.S. Army), and
Project AIR FORCE (sponsored by the U.S. Air Force). This document will be of
interest both to users of the MOSF databases and to other relational database
users who would like to develop an RMMS-based metadata repository for their
set of databases.

Contents

Preface iii

Summary vii

1. INTRODUCTION 1

2. MOTIVATION 3

3. ISSUES 5

4. RELATED WORK 9

5. RMMS FUNCTIONALITY 11
Documentation 11
Version Management 12
History Management 12
Database Derivation 13
Data Element Standardization 13

6. RMMS ARCHITECTURE 15

7. CONCLUSIONS 19

Appendix
A. RMMS DATA ENCYCLOPEDIA TABLES 21
B. RMMS DATA DICTIONARY TABLES 28

References 41

Vll

Summary

The RAND Metadata Management System (RMMS) is a system that manages
"metadata." Metadata denotes definitional and descriptional information about
databases, simulation models, and procedures. Databases, such as those
maintained in the INGRES database management system (DBMS) by the Military
Operations Simulation Facility (MOSF), are prevalent throughout RAND.
Similarly, many prominent simulation models are exercised regularly in the
MOSF and require input data extracted from INGRES databases. However, most
of these databases have little documentation or other descriptional information to
go along with them. The absence of such information leaves users at a loss for
understanding the definitions, abbreviations, acronyms, and descriptions of the
pieces of data stored and maintained in a DBMS.

This report presents the design of the RMMS, a metadata management system for
relational databases. Our goal was to produce a design document that could be
used both by the users of MOSF relational databases (who may be future users
of RMMS) and by users of other relational databases who would like to develop a
similar RMMS metadata repository for their own set of databases. This work
was motivated by the proliferation of databases stored and used in the MOSF
and by a realization by the MOSF database management staff that such metadata
is at least as important as, if not more important than, the actual data values.
Although a "management system" typically includes facilities for user
interaction and maintenance, in this document we focus primarily on the
metadata storage structures within RMMS. Detailed discussion of user interface
and maintenance designs is beyond the scope of this report.

We have addressed five major issues or "needs" during the development of
RMMS:

• The need to provide complete, thorough, and standard database
documentation;

• The need to record and manage information about different versions of each
database;

• The need to maintain a history of the changes made to database tables,
schema, or data values;

Vlll

• The need to facilitate derived databases for input to simulation models and
to share among models; and

• The need to standardize the names of data elements that are (1) conceptually
the same but are named differently or (2) named the same but are

conceptually different.

Each of these issues responds to a limitation faced by users of the MOSF
relational databases and simulation models that require input from those
databases. The design of RMMS supports these requirements.

RMMS has two major components. One component is a database of metadata

tables referred to as the Data Encyclopedia. In the RMMS, the database name
given to the Data Encyclopedia metadata tables is "rmms". The information
contained in these tables reflects the entire configuration of MOSF's databases
and their versions, standard data elements and aliases, derived databases,
simulation models that make use of the databases, and shared computer
procedures, such as unit conversions and database derivations. General
information about a particular database is recorded in the Data Encyclopedia.

The second component of RMMS is a set of metadata tables that augment the
database of each external and derived database that is recorded in the Data
Encyclopedia. This set of metadata tables is referred to as the Data Dictionary
metadata tables. Each MOSF relational database will contain a corresponding set

of Data Dictionary metadata tables. These tables record metadata about specific
tables and columns in the corresponding data tables. Although other data
models (such as semantic and object-oriented) and other information media
(such as text, images, and voice) also require metadata, we limited our scope to
metadata for relational databases.

The implementation of RMMS is an ongoing activity. Schemas for the Data
Encyclopedia tables and Data Dictionary metadata tables have been developed
and installed. However, acquiring metadata to populate the Data Encyclopedia
and Data Dictionary is a continuing task. The initial user interface was
developed in the C programming language using the OpenWindows Developer's
Guide (Devguide) interface system (OpenWindows, 1990). Future plans are to
explore the use of INGRES Windows 4GL as the interactive windowing
environment. Although RMMS is implemented in the INGRES DBMS, its
schema can be ported to any relational system.

The benefits of RMMS have been particularly significant for database users in
applications that require ad hoc access and integration from multiple databases.
Currently, users rely on RMMS for documentation, browsing, retrieving subsets,

formatting subsets, and verifying data values. The statistics metadata has also
been judged very useful for determining the profiles of data samples. Although
the RMMS prototype implementation is incomplete and continually evolving, it

is both often used and well liked.

1. Introduction

Electronic databases and database management systems (DBMSs) are becoming
commonplace in scientific and research communities. However, when scientific
databases are installed in a DBMS, electronic documentation or other
descriptional information is rarely included. The absence of such information
leaves users at a loss for understanding the definitions, abbreviations, acronyms,
and descriptions of data stored and maintained in a DBMS.

To effectively use and share these databases, additional information or metadata

is needed to define and describe databases and their contents (Mark and
Roussopoulos, 1986; McCarthy, 1982). Metadata can take the form of (1)
information about the database as an aggregated whole or (2) information about
actual data elements stored in the database. For example, from an aggregate
viewpoint, it is important to know the dates for which a database is valid, how
the database was generated or where it originated, and the relationship between
a current version and a previous version of the database. Metadata describing
specific data elements is based on the schema organization of the database and
includes information such as the measurement units and value constraints of
data elements. For instance, if a data element stores the weight of an aircraft
fuselage, an engineer would like to know if the value represents pounds or
kilograms. Similarly, if the fuselage should not exceed a certain weight, a user
should have access to the exact weight limit and be notified if an updated value
exceeds the limit.

Metadata covers a wide range of information that promotes the sharing, reuse,
and interoperability of data, including information to help locate, access, browse,
clean, and aggregate databases. The importance of metadata has intensified with
the rapid growth of scientific and engineering databases. Users of these
databases tend to access and integrate subsets of databases dynamically and
interactively, depending on the study, simulation, or analysis that is being
designed. Historically, database metadata was not needed by business and
financial enterprises because they relied on databases and DBMSs to record
transactions applied by static application programs such as accounts payable,
sales, and general ledger applications. However, even business users are taking
advantage of ad hoc query capabilities and therefore will be requiring metadata
repositories. For example, international financial services require metadata
management for identifying currencies (e.g., Canadian dollars, Chilean pesos),

recording exchange rates, and computing functions for currency conversion.
Another important advantage of metadata is that it begins to facilitate data
sharing and interoperability across functional areas of an application. To achieve
interoperability requires agreement about the meaning and usage of domain
concepts, domain entities, and corresponding data elements of the entities.

This report describes the RAND Metadata Management System (RMMS) whose
function is the storage and maintenance of metadata to improve five major
aspects of DBMS data administration: documentation, version management,
history management, derived databases, and standard data elements. A

metadata management system maintains not only metadata information, but also
procedures needed to apply metadata, for example, to verify value constraints or
to convert metric units (Kerschberg, Marchand, and Sen, 1983). Although a
"management system" typically includes facilities for user interaction and
database maintenance, in this document we focus primarily on the metadata
storage structures within RMMS. Detailed discussion of user interface and
database maintenance designs is beyond the scope of this report.

At RAND, RMMS maintains metadata about military databases, including data
on weapon systems, military forces, and intelligence information. These
databases are used as input to battle-management and command-and-control
simulation systems and analytical models. RMMS has also been proposed as a
metadata management system for environmental databases that monitor the
generation and management of industrial waste materials.

In the next section we present examples of the use of metadata in different
application areas. Section 3 cites specific problematic issues that RMMS is
addressing and Section 4 discusses related work. In Section 5 we identify five
categories of functionality supported by RMMS. The software architecture of
RMMS is described in Section 6. We conclude with a discussion of future
research issues for RMMS extensions. Appendices A and B contain detailed
design specifications for the implementation of RMMS.

2. Motivation

A National Science Foundation study has identified the management of metadata
as one of the primary issues in scientific database management (French, Jones,
and Pfaltz, 1990). Below, we explain the need for metadata management systems
by identifying a number of examples of the use of metadata within a wide range
of scientific disciplines.

• Social science studies integrating census data over many decades must be
able to compare the Schemas of different versions of data because through
the years different data fields have been recorded. For example, census
surveys early in the century asked if households had a flush toilet.

• In military command-and-control simulations, it is important to maintain a
history of database updates to analyze how a data field has changed over
time.

• Different environmental waste databases maintain contaminant levels
differently, for instance, as concentration percentages or as a pair of weights
representing solid waste and total waste. To compare contaminants across
two such databases requires knowledge of the representations and
conversion procedures each uses.

• The dimensions of an aircraft fuselage are constrained by design
specifications. These constraints can be stored as metadata to be used for
cleaning and verifying data values.

• For a study analyzing international trends and costs of new technology
breakthroughs, a researcher may need to retrieve data on foreign patents and
will compare (1) calendar dates represented in different formats (e.g.,
mmddyy vs. yymmdd) and (2) different monetary currencies. Integrating
data with these incompatibilities also requires metadata.

• In survey databases, most character fields are numerically encoded. If one
survey codes 1 = female, 2 = male, and another survey is the opposite, then
integration processes must recognize and reconcile these differences.

• Metadata is also an ideal resource for browsing, making it possible to
identify, for example, databases that contain information on military airfield
and runway assets. Metadata serves to link references from standard data
elements such as "airfield" and "runway" to the databases that contain data
for these data elements.

Effective sharing and integration of scientific databases depends on the
availability of metadata. As exemplified above, metadata refers not only to
descriptional information but also to procedures, e.g., for conversion of units and

verification of value constraints. The goal of a metadata management system is
to centralize and standardize metadata information and associated procedures.

Once this goal is achieved, users will have an extensive set of capabilities for
learning about the contents of a database, retrieving desired data, and combining
data from various databases.

3. Issues

In this section we identify five specific issues or needs that we addressed during
the development of RMMS. Each of these issues, discussed below, responds to a
limitation faced by researchers who require data from application databases as
input to simulation, modeling, and analysis systems.

The need for complete, thorough, and standard data documentation. In the past,
hardcopy documentation has been limited, ad hoc, and sketchy; electronic
documentation has been virtually nonexistent. Some databases are delivered
with hardcopy manuals or codebooks, but most often these must be acquired
independently from the electronic databases. These manuals usually include
system information for a database administrator but are rarely useful for casual
users who want an overview of database contents. Instead, knowledge of the
semantics or conceptual meaning of the database contents is frequently passed
through word of mouth from experienced users to novices. This situation has
many drawbacks leading to inconsistent and inaccurate applications of data.
First, since precise and definitive semantics governing attributes are not stated
explicitly, there may be subtle (or gross) differences in the meaning that users
attribute to data elements. Second, users frequently need to integrate, aggregate,
or otherwise combine data from different databases to derive a new database.
Therefore, users must guess what attribute in one database corresponds
conceptually to an attribute in another database. Even when users spend much
time learning about the organization and semantics of the data, their knowledge
is not recorded and a new user must subsequently start from scratch to collect
relevant information.

The need to record and manage information about different versions of databases.
Administrators of scientific databases must manage different versions of databases
that originate from a variety of sources. Many studies require databases that are
acquired from outside agencies that release new versions regularly, e.g., weekly,
monthly, yearly. For databases that are generated by a tightly coupled data
collection activity such as the output of an experiment or simulation, the elapsed
time between versions may be only minutes. In all applications, however,
installing a new version means asking questions like:

• What should we do with the old version?

• How long should we maintain the old version?

• Should we reapply to the new version corrections that were previously made
to the old version?

• Can we recreate or reload the old version if an analyst needs to rerun an
analysis or needs a series of old versions for a longitudinal study?

The answers to these questions constitute policies and automated procedures for
version management and should be included as part of a metadata management
system. Although the procedures may vary for different databases, they should
be consistent across all versions of the same database.

The need to maintain a history of the changes made to database tables, schema,

and data values. Facilities for version management (described above) maintain

information about different versions. Facilities for recording the actual old values

and the new updated values (or history of data values) should also be provided by
a metadata management system. This capability will benefit those applications
that require a complete audit trail (at the logical level) of all additions to,
modifications of, and deletions from the data or schema. Although DBMS
logging facilities record all database transactions, these results are system-level
audit trails intended primarily for database administrators. We identified four
major objectives for this facility. First, we wanted to minimize the amount of
storage needed to maintain old versions. Frequently, in a new version only a
small percentage of the database has changed. Therefore, simply maintaining
complete old versions independently or as archived databases is not acceptable.
A second objective was to explicitly record all additions to, modifications of, and
deletions from either data values or the schema. For example, the addition of a
new table to a new version should be reflected explicitly in the version
management system along with the registration of a new table in the DBMS
schema structures. Recreating previous versions or "snapshots" was a third
objective of a history management facility. With this capability, a user or
database administrator can directly determine the differences between two
versions of a database. Finally, we needed to ensure that the underlying history
management facilities are transparent to a user and that when accessing the
current version of the database, no extra overhead is incurred.

The need to facilitate derived databases for input to simulation models and for
sharing among models. RAND does not generally produce original-source data;
rather, it acquires databases from external agencies and derives subsets for
specific studies. We define a derived database as one that is NOT generated or
distributed by an external outside agency. That is, a derived database is one
which is generated within RAND's data management facility by some
combination of (1) manually collecting or composing data, (2) automatically

collecting data (such as output from a simulation model), (3) retrieving subsets of
data from one or more nonderived databases, (4) applying transformations to
subsets of data from nonderived databases, and (5) integrating subsets of data
collected by methods (1) through (4). For the remainder of this paper, we refer to
nonderived databases as "external" databases because these databases will
generally be acquired from outside sources. The goal is to store and maintain
derived databases as full-fledged external databases that can be referenced and
accessed as if they were acquired as external databases. As full-fledged
databases, these derived versions should include the same type of metadata
information as their external database counterparts plus metadata documenting
how they were derived. Ideally, a metadata management system should also
automate the generation of metadata for a derived database, depending on the
source of the external data.

The need to standardize the names of data elements that are (1) conceptually the
same but named differently or (2) named the same but conceptually different.

This goal addresses a common practice among scientific database users, namely
aggregating, integrating, and combining data from different databases to
produce a new database. For example, if a user is deriving a database of
commercial airfields in the United States and Canada, he or she will retrieve data
from at least two databases: one representing U.S. commercial airfields and
another representing Canadian airfields. Suppose the column name representing
runway length in the U.S. database is called "runwayln," and the column
representing runway length in the Canadian database is named "rwlength."
Further suppose that the length of runways on U.S. airfields is recorded in feet
and that the length of runways on Canadian airfields is stored in kilometers. The
user is faced with two decisions about the derived database: (1) what to name
the column for runway length (i.e., "runwayln" or "rwlength" or something
else); and (2) what units of measurement to use in the column representing
runway length (i.e., feet or kilometers or some other metric). Furthermore, once a
metric is chosen, the user must convert some (if not all) of the values to a single
metric unit. The implications of the decision many not be critical if the database
is only single purpose and is not being installed for general availability.
However, if the original user or another potential user may be interested in the
same database in the future, providing a standard methodology for addressing
database integration issues will improve productivity for future users. Standard
data elements address this problem by establishing a standard name
(independent of any database or data table) for a particular concept. Aliases are
used to identify the name and usage of the same concept in each specific
database. With standard data elements and aliases, a user deriving a new
database is provided with guidelines and standards for naming new columns.

For future users who want to peruse or retrieve data about a particular concept,
say, runway length, a repository for standard data elements and aliases serves as
a reference to all databases that represent runway length.

4. Related Work

In this section we first describe different methodologies adopted by two
dictionary system approaches: DBMS catalogs and information resource
dictionary systems. We also discuss specific data dictionary and data modeling
efforts with functionality similar to RMMS.

Most DBMSs include a component called a data dictionary or system catalog.
For relational DBMSs, this data dictionary maintains system tables containing
information about database tables and columns. The information stored in this
repository is generated at schema definition time and includes those database
characteristics that are specified in the data definition language. These
characteristics (for a table) include data such as who owns the table, when the
table was created, and what storage structures are used for indices. Column
metadata includes information such as the datatype and length of the column
value and whether nulls or defaults are permissible. Much other system
information is recorded in this data dictionary; however, most of this information
is only relevant for the operation and optimization of the DBMS. These facilities
cannot, for example, be used to store the units of a measurement value or any
semantic information such as the relationship between a key attribute in one
table and a foreign key in another. RMMS serves a different role from DBMS
system catalogs and data dictionaries by managing semantic information
required by users and applications for accessing and manipulating data in a
manner that is semantically correct and that achieves the intention of the query.

Information Resource Dictionary Systems (IRDSs) have also been the subject of
considerable research Polk, 1987; Goldfine, 1985; Jones, 1991; Kossman, 1987;
Navathe and Kerschberg, 1986). The scope of IRDS embodies the major activities,
processes, information flows, organizational constraints, and concepts of an
"enterprise model." In the past IRDSs were considered primarily as a design tool
for information modeling and database design. "Active" data dictionaries were
used only during batch DBMS operations or real-time transaction processing.
Goldfine and König (1988) present IRDS specifications according to the National
Institute of Standards and Technology (NIST). This standard describes a kernel
set of basic data dictionary capabilities plus a collection of independent optional
modules. So far, three additional modules have been specified dealing with
security, application program interface, and documentation. The emphasis on
program interfaces and the neglect of interactive tools are evident in the

10

specification. Until recently, facilities provided by an IRDS were sufficient for
information management in static business and financial applications. However,

IRDSs are not amenable to scientific applications that require ad hoc database
manipulation. Furthermore, no IRDS implementations or tools currently conform

with the NIST IRDS standards.

In the remainder of this section we will discuss four other data administrative
efforts that are developing semantic data dictionaries for metadata management.
First, the Center for Information Management within the Defense Information
Systems Agency (DISA/CIM) has initiated an effort to catalog all Department of
Defense (DoD) data elements (Department of Defense, 1992). The Defense Data
Repository System (DDRS) maintains standard data elements used throughout
both DoD business applications and DoD command, control, communications,
and intelligence applications. Standard data elements in the DDRS are being
derived from a top-down DoD data model identifying major entities and
attributes of those entities. Although the DDRS is not related to a specific
database or DBMS, it will serve as the standard set of DoD data elements for
naming and operating among DoD information systems. A new DoD effort is
approaching standard data elements from the bottom up. The Joint Data Base
Elements (JDBE) project sponsored by the Defense Modeling and Simulation
Office (DMSO) is conducting reverse engineering efforts for existing subject area
simulation models and databases to identify the subject area data requirements.
Based on these requirements, JDBE staff will produce an IDEF1X data model
(Bruce, 1991). Data models from many different applications in common subject
areas will be merged to identify common data entities and attributes. From this
set of common data elements will emerge a standard data dictionary. In a third
project, the U.S. Army has implemented the Training and Doctrine Automated
Data System (TADS), which supports the transformation of external databases
into the format needed for Army combat models. TADS requests data from
about 20 suppliers and enforces standard nomenclature, standard output data
files, and standard transformation processes. The Army's modeling and
simulation community requests data from TADS in specific formats required by
approximately 12 existing models. The final system we present is the Operations
Analysis and Simulation Interface System (OASIS) developed by the U.S. Joint
Chiefs of Staff. The OASIS mission is to develop a system that will significantly

improve data collection, access, verification, analysis, reporting, and
documentation for joint studies and analysis processes. OASIS is most similar to
RMMS because it uses a centralized relational DBMS for its data element
dictionary. OASIS contains an on-line dynamic data dictionary based on an
entity-relationship model and uses an interactive window system for accessing

the data dictionary.

11

5. RMMS Functionality

The primary objective of RMMS is to streamline the sharing, reuse, and
interoperability of relational databases. In particular, we have designed RMMS
to respond to the five needs identified in section 3. In the following section, we
discuss how RMMS serves these needs. Although other data models (such as

semantic and object-oriented) and other information media (such as text, images,
and voice) also require metadata, we initially limited our scope to metadata for
relational databases.

Documentation

RMMS provides a standard methodology for documenting relational databases.
This capability supports a uniform representation for documentation yet allows
enough flexibility to represent unstructured textual comments, such as "the
values of this column were derived manually using background knowledge and
human judgment." Simply knowing how such data were derived (even though
they were not derived in a rigorous fashion) is nevertheless helpful to a
subsequent user.

Documentation is stored for many different categories of database entity types,
for example, database, table, and column entities all have associated
documentation. Inter- and intra-table relationships between columns are also
identified and documented. Domain information, such as allowable values for a
column, are maintained along with abbreviations and acronyms. Version
information, historical data, and statistics reporting on the frequency of values all
serve as documentation that helps a user decide what data to select.

Because of the structure imposed on database documentation in RMMS, it is
appropriate not only as human-readable documentation, but also as machine-
readable data specifications (e.g., translation routines for converting units) which
further contributes to maintaining data consistency. All metadata in RMMS is
considered documentation. Some of it is more relevant to interactive users; other
metadata facilitates the four capabilities discussed below.

12

Version Management

In RMMS, version management refers to the tracking of information such as the
availability, source, and schema of different versions. RMMS is designed to
accommodate two version tracks: an external version track and an internal
version track. Since many of RAND's databases are acquired from outside
agencies, it is critical to be able to identify a database by its external (agency)
version number. However, as a user of the data, RAND does not always acquire
or install every newly released agency version. Furthermore, RAND's data
administrator may make changes to the data and internally produce a new
version that is derived from the version which the external agency distributes.
Therefore, internal version tracking is also necessary. The RAND internal
version track is represented as a version number of the form p.s where p is the
primary version number and s is the secondary version number. When a new
agency version arrives, the p portion of the version number is increased by 1 and
the s portion is set to 0. When RAND data administrators make any changes to
the data, the s portion of the version number is increased by 1. Correspondence
between the agency's assigned version number and RAND's version number is

also maintained as part of version management metadata.

History Management

History recording facilities maintain actual data values of current and old
versions, both external and internal. Many approaches for maintaining historical
data are practiced (Adiba and Quang, 1986; Dadam, Lum, and Werner, 1984;
Segev and Shoshani, 1987; Snodgrass and Ahn, 1986). The simplest approach, yet
most costly in terms of resources, is to maintain complete copies of all versions in
their own independent databases. Clearly, this is not a pragmatic solution.
Other options include archiving complete copies or maintaining only the updates
or changes to each version, rather than complete copies of each version. A
disadvantage of maintaining only the updates is that whenever a user needs the
current version, he or she must apply a series of updates to a baseline version.
Because RAND users most often want to retrieve data from the most recent
version, maintaining only updates is not a practical alternative. The
methodology we developed for RMMS maintains a history of all changes to a
database by recording the previous value of a data item (before it has been
updated by a new version) in a metadata table similar in structure to the table
containing the modified data. These "value history" tables store old values from
data tables that have been subsequently updated. Corresponding history
metadata tables for recording changes to a table as a whole (such as changing the

13

name of a data table) and changes to the schema (such as changing the column
length or data type of a column) are stored in "table history" and "column
history" metadata tables.

Database Derivation

A derived database is one that is generated internally from one or more external
databases. Throughout the course of an analysis or study, researchers will
produce many database variations derived from baseline data. In many cases, a
user wishes to "permanently" store and maintain a derived database for future
use. Facilities in RMMS support the derivation process by maintaining (1)
specialized metadata relevant to derived databases, (2) procedures to
automatically populate derived database metadata from external database
metadata, and (3) a trigger mechanism for updating derived databases when
external source databases have been updated.

If metadata for the source database is maintained in RMMS, then a subset of this
metadata can be applied as metadata for the derived data. If the source is not a
registered database or has no associated metadata, the user generating the

derived database will be queried for relevant metadata. A derived database will
contain an "audit trail" indicating the source of the data, the source's version, a
timestamp recording the date of derivation, and other supplemental metadata
such as procedures used for transformations.

Linkages are maintained between derived databases and their respective source
databases. In theory, when a new version of an external database is installed at
RAND (or the current version is updated), a new version of the corresponding
derived databases can be generated. In practice, however, this process is possible
only if the derived database was produced automatically from external
databases. Furthermore, it may not be desirable to automatically regenerate the
derived databases. Instead, when an external database is updated or a new
version installed, RMMS can determine which derived databases are affected and
set a flag in the metadata of each derived database. This "trigger" mechanism
will inform the user of a database when it needs to be "re-derived" from updated
sources databases.

Data Element Standardization

Standard data elements are necessary to support interoperability among
independent applications in an enterprise. Standard data elements are intended
to represent those data values that are considered atomic and are not

14

decomposable. For example, "employee last name" and "length of runway" are
atomic data elements because they represent primitive elements that cannot be
further decomposed. Many organizations are addressing the development of
standard data element dictionaries for maintaining metadata and domain

information relevant to data elements.

Metadata supporting standard data elements not only maintains a standard
nomenclature for a given concept, but also prescribes standard units for
measurement attributes. Procedures for converting units from one metric to
another are part of the procedural component of a standard data element

repository. When deriving a new database using the RMMS standard data
element facilities, a user would apply the provided procedures to convert values

to the standard metric. Note that the use of standard data elements does not
require or suggest any changes to names or units in the original databases.
Instead, an "alias" is used to express the relationship between a standard data
element name and a database name for the same concept. Therefore, this
methodology provides a standard liaison between conceptually identical data
elements among independent databases.

With the use of standard data elements, "aliases," and conversion procedures,
two objectives are achieved: (1) a user deriving a new database is provided with
standards for naming the new columns and with libraries of procedures for
converting units, and (2) future users who want to peruse or retrieve data about a
particular concept, say, runway length, can use a standard data element and its
aliases as a pointer to all databases that represent runway length. This second
benefit contributes to increased reusability and comprehensibility of the contents

of application databases.

Maintaining data elements that are conceptually the same (and maybe even
spelled the same) but which differ in other ways, such as format or resolution, is
an issue that remains to be addressed in RMMS. For example, one database may
store the month and year of an event, but another database may store the month,
year, day, and time. Facilities for comparing, translating, and combining data
such as these must also be provided by standard data element facilities.

15

6. RMMS Architecture

RMMS manages metadata for relational databases that are maintained in the

INGRES DBMS. Therefore, we designed RMMS as a set of INGRES relational

tables that extend the application databases. RMMS has two major components.

One component, the "Data Encyclopedia," is a database of metadata tables that

maintains general information about all application databases. The other

component, called the "Data Dictionary," is a set of tables that augments the

tables for each application database and contains metadata about specific entities

and attributes of a database. Although a single Data Encyclopedia database

exists for an entire enterprise, each application database includes its own set of

Data Dictionary tables. Figure 1 illustrates the two components and their

relationship to application databases. Table 1 lists the RMMS tables illustrated in

Figure 1. In this section, we describe the design architecture, implementation

status, and user interaction supported by RMMS. (In Table 1 and Figure 1, "sde"

stands for "standard data element," and "md" stands for "metadata.")

Table 1

RMMS Tables

RMMS Data Encyclopedia tables

database
version_history
standard_data_element
sde_aliases
standard_domains
sde_numeric_domain_range
values_<sde_domain_name>

RMMS Data Dictionary tables

md_table_extend
md_column_extend
md_dependencies
md_links
md_table_history
md_column_history
md_value_history_<table name>
md_value_enum
md_numeric_domain_range
md_range_statisties
md_enum statistics

16

INGRES Database Management System

"RMMS" database

values_<sde_domain_name>

sde_numeric_domain_range

s t andard_doma ins

sde_aliases

standard_data_element

version_history

database

application database 1

md_enum_statistics

md_range_statistics

application tables

md_numeric_domain_range

md_value_enum

md_value_history_<table name>

md_column_history

md_table_history

md_links

md_dependenc i e s

RMMS

Data

Encyclopedia

md_c o lumn_ext end

md_table_extend

metadata tables

RMMS

Data

Dictionary

application database 2

application tables metadata tables

Figure 1—RMMS System Architecture

17

The Data Encyclopedia database, named "rmms," reflects the entire
configuration of application databases and their versions, standard data elements
and aliases, derived databases, and shared computer procedures, such as unit
conversions. This database contains metadata information that applies across all
application databases. The tables contained in the Data Encyclopedia or "rmms"
database are shown in Figure 1 as a separate independent INGRES database.
(For the remainder of this document, the Courier typeface is used to indicate

specific INGRES table names and column names.) The tables named database
and version_history contain information on specific databases; the tables

standard_data_element, sde_aliases, standard_domains,
sde_numeric_domain_range, and values_<sde_domain_name> represent
standard data elements and corresponding domains and their values (both
character and numeric). The tables named values_<sde_domain_name> refer
to one table for each standard domain where each table enumerates allowable
values for that domain. Appendix A details each of these tables and their column
names.

As we discussed earlier, INGRES maintains within each database its own
"system" tables, which contain minimal metadata necessary for INGRES
operation. However, INGRES system tables are not extensible and are not
intended for storing semantic information about the database. Therefore, RMMS
supports additional metadata tables, called the "Data Dictionary," which
augment the INGRES system tables. Data Dictionary metadata relates to one
specific application database and is stored as metadata tables in the INGRES
database containing the application tables. One set of Data Dictionary metadata
tables exists for each INGRES application database. These tables are prefixed
with "md_" so that users can distinguish those tables that contain RMMS
metadata from those tables in the application database that contain actual data
values. We use the terminology "metadata tables" to refer to tables that are part
of the RMMS Data Dictionary system and contain definitions, descriptions, and
information about specific data tables. In Figure 1, Data Dictionary metadata
tables are shown with each application database.

Data Dictionary metadata extends the scope of the INGRES system tables. We use
the suffix "_extend" as part of the Data Dictionary table name. For example,
md_table_extend and md_column_extend contain detailed information about
application tables and columns. The tables md_dependencies and md_links
identify inter- and intra-column dependencies and join fields. The history of data
values is maintained in the tables md_table_history, md_column_history,
and md_value_history_<data table name>. Domain metadata are stored in
md_value_enum and md_numeric_domain_range. Finally, statistics about

18

value distributions are maintained in md_range_s t at i s t i c s and
md_enum_statistics. A detailed discussion of each md_ Data Dictionary table

and column can be found in Appendix B.

The implementation of RMMS is an ongoing activity. Schemas for the Data
Encyclopedia tables and Data Dictionary metadata tables have been developed
and installed. However, acquiring metadata to populate the Data Encyclopedia
and Data Dictionary is a continuing task. RAND's data administrators are
strongly recommending that newly registered databases be loaded into INGRES
with metadata. Often, however, all metadata is not available or projects do not

want to assume the cost of developing metadata. Therefore, for many databases,
the development of Data Dictionary tables occurs over time. The initial user

interface was developed in C using the OpenWindows Developer's Guide
(Devguide) interface system (OpenWindows, 1990). Future plans are to explore
the use of INGRES Windows 4GL as the interactive windowing environment.
Although RMMS is implemented in the INGRES DBMS, its schema can be ported
to any relational system. Currently, users rely on RMMS for documentation,
browsing, retrieving subsets, formatting subsets, and verifying data values. The
statistics metadata has also been judged as very useful for determining the

profiles of data samples.

19

7. Conclusions

RMMS responds to a majority of issues faced by scientific database users for
integrating, sharing, and reusing application databases. In this final section, we
present one issue that has not been fully addressed by RMMS, namely, complex
data types. We conclude with a brief discussion of another potential RMMS
application.

One future RMMS goal is to develop an approach for modeling nonatomic or
complex data as standard data elements. Complex data includes data elements
that are derived, composed, or computed from other standard data elements,
such as lists, repeating groups, matrices, probability distributions, and abstract
data structures. Traditionally, standard data elements were atomic for two
reasons: First, DBMSs, and especially relational DBMSs, required a normalized
representation of data in which each data slot was atomic. For example, in a
relational database, an entry in a table should be a single atomic value, not a list
or a repeating group or a concatenation of strings. Furthermore, the data type of
the atomic value was limited to alphabetic or numeric. Second, the practice of
data modeling and data administration regarded basic elements of information
as atomic and nondecomposable. Conversely, if a piece of data was
decomposable, then the data (in its composite form) could not be considered a
standard basic element of data. Advanced data modeling techniques along with
extended relational and object-oriented DBMSs have made these rules obsolete.
Complex data in the form of abstract data types and object data types are
referenced and used in their composite form. Currently, standard data elements
in the RMMS Data Encyclopedia are atomic elements. However, to promote
better data modeling and interoperability in applications, RMMS must support
complex data elements as both atomic elements and as nonatomic decomposable
elements. In addition, RMMS must also maintain the relationship between the
whole and its parts for verifying, integrating, and deriving application databases
containing complex data elements.

The development of RMMS was motivated by (1) the proliferation of databases
stored and used at RAND and (2) a realization that maintaining metadata is at
least as important as maintaining the actual data values. Each of the five issues
addressed by RMMS responds to a limitation faced by users of RAND's
relational databases and simulation models that require input from those
databases. The benefits of RMMS have been particularly significant for database

20

users in applications that require ad hoc access and integration from multiple
databases. Although the RMMS prototype implementation is incomplete and

continually evolving, it is both often used and well liked.

Until now, RMMS has been used to manage metadata for military databases that
serve as input to simulation models. We have also proposed using RMMS in
environmental engineering applications. In these applications, the goal is to
improve the management, integration, and analysis of environmental datasets
collected for different purposes, at different levels of aggregation, by different
agencies, and over different periods of time. In this environment, detennining
the availability, accessibility, and location of critical data is a key challenge.
RMMS will serve a major role in the maintenance of metadata necessary to meet

these goals.

21

Appendix A

RMMS Data Encyclopedia Tables

The names of the tables and the corresponding columns that comprise the Data

Encyclopedia database are listed below. A detailed discussion of each table and

its attributes follows the list of tables.

database metadata table
db_name
current_status
source_information
current_rand_version
checkpt_version
valid_users
documentation
description

version_history metadata table
db_name
agency_version
agency_date
rand_version
rand_date

standard_data_element metadata table
sde_name
sde_long_name
sde_units
sde_domain_name
sde_source
sde_composite_datatype_flag
sde_description

sde_aliases metadata table
sde_name
db_name
table_name
column_name

s t anda rd_doma ins metadata table
sde_domain_name
sde_name
sde_domain_category
values_table_name
sde_valid_pattern
sde_domain_description

22

values_<sde_domain_name> metadata table
standard_value
expansion
description

sde_numeric_domain_range metadata table
sde_domain_name
sde_min
sde max

A discussion of each Data Encyclopedia metadata table now follows.

The database Metadata Table

This table contains basic information about each of the relational databases

maintained in the MOSF and available for user applications. It may or may not
include temporary and working databases, depending on the desires of the DBA
(database administrator). This table contains one row for every available
database. The columns in this table are listed below.

db_name
explanation: the name assigned to the INGRES database.

allowable values: fixed-length character string of 24 characters
beginning with a letter.

current_status

explanation: a flag to indicate whether the database is active or
inactive.

allowable values: {"A" "l").

source_information

explanation: information about the agency that supplied the database
including agency name, address, point of contact; if this database is
derived, then this field should indicate what databases it was derived
from.

allowable values: freeform variable-length text string.

current_rand_version
explanation: the version number assigned and maintained by MOSF
representing the data as of a particular date.

allowable values: {"1.0" "1.1" ... "l.n" ... "m.n"}.

checkpt_version

explanation: last backed-up or archived version.

allowable values: {"1.0" "1.1" ... "l.n" ... "m.n"}.

23

valid_users
explanation: list of login names for users who are allowed access to the
databases.
allowable values: freeform variable-length text string.

documentation
explanation: what documents are available, where they are located,
who distributes them.
allowable values: freeform variable-length text string.

description
explanation: a general overall description of the contents of the
database.
allowable values: freeform variable-length text string.

Note that the field db_owner (the database owner) is an important piece of
metadata but is not included in this metadata table because it can be found in the

INGRES system tables.

The version_history Metadata Table

This table provides a complete history of all versions of each database, from their
initial installation through their current version. This table contains one row for
each new version (agency-generated or RAND-generated) of each available

database. The columns in this table are listed below.

db_name
explanation: the name assigned to the INGRES database.

allowable values: fixed-length character string of 24 characters
beginning with a letter.

agency_version
explanation: the version number assigned by the distributing agency.

allowable values: fixed-length character string.

agency_date
explanation: the date of the database, assigned by the distributing
agency.
allowable values: INGRES date type.

rand_version
explanation: the version number assigned and maintained by MOSF
representing the data as of a particular date.

allowable values: {"1.0" "1.1" ... "l.n" ... "m.n"}.

24

rand_date
explanation: the date when the database that corresponds to the
rand_version number was installed in the MOSF.

allowable values: INGRES date type.

The standard_data_element Metadata Table

This table contains information about standard data elements (sde) which have

been established in the MOSF. This table relates to the sde_aliases table
though the column sde_name found in both this table and the sde_aliases
table described next. This table contains one row for every standard data

element. The columns in this table are listed below.

sde_name
explanation: a terse name for the standard data element.

allowable values: fixed-length character string.

s de_long_name
explanation: a full name for the standard data element.

allowable values: fixed-length character string.

sde_units
explanation: the unit of measure (if applicable) assigned to the
standard data element.

allowable values: fixed-length character string.

sde_domain_name

explanation: the name of a standard domain found in the sde_domain
metadata table.

allowable values: fixed-length character string.

sde_source
explanation: the source from which the standard data element
information was obtained or derived.

allowable values: freeform variable-length text string.

sde_composite_datatype_flag

explanation: this flag indicates whether the standard data element is a
composite data type.

allowable values: {"y" "n"}.

25

sde_descript ion
explanation: a description of the standard data element (which could
be an aggregated or derived standard data element).

allowable values: freeform variable-length text string.

The sde_aliases Metadata Table

This table contains the names of all columns in all MOSF database tables that
denote a concept that has an associated standard data element. In this table, the
column_name is considered an alias for the name given by sde_name. In
general, an alias is a different name for referring to a particular concept.
However, our use of "alias" also includes column names that are identical to a
standard data element name. Therefore, this table can be used as a directory to
determine which databases contain the same concept (regardless of whether its
name is identical to or different from the name of the standard data element).
The columns in this table are listed below.

sde_name
explanation: a terse name for the standard data element.

allowable values: fixed-length character string.

db_name
explanation: the name assigned to the INGRES database.

allowable values: fixed-length character string of 24 characters
beginning with a letter.

table_name
explanation: the name of the table containing the alias.

allowable values: fixed-length character string.

column_name

explanation: the name of the column denoting the alias.

allowable values: fixed-length character string.

The standard_domains Metadata Table

This table contains domain information for each standard data element. Domain
information specifies the allowable values that are acceptable for a standard data
element. For each standard data element in the standard_data_element
metadata table, there are one or more entries in this table. In cases where more
than one domain is applicable to a standard data element, the domain sets will be
related by subset relationships; that is, for a particular standard data element, a

26

subdomairi will be a subset of the inclusive domain set. For example, if the set of
countries in the world serves as a standard domain for the standard data
element "country," then the set of European countries or the set of Eastern
European countries is considered a subdomain of that standard data element.

The columns in this table are listed below.

s de_doma i n_name

explanation: the standard name given to a domain; corresponds to
sde_domain_name in the standard_data_element metadata
table.

allowable values: fixed-length character string.

sde_name
explanation: the name of the standard data element for which this
domain applies; corresponds to sde_name in the
standard_data_element metadata table.

allowable values: fixed-length character string.

sde_domain_category

explanation: the type of the domain (enumerated list of character
strings, a patterned string, or a numeric type).

allowable values: {"enum" "pattern" "num"}.

values_table_name
explanation: if the sde_domain_category is "enum," then this field
names the metadata table containing the allowable values.

allowable values: the metadata table name is formed by prefixing the
sde_domain_name with "values_".

sde_valid_pattern

explanation: if the sde_domain_category is "pattern," then this
column records a pattern specification; for example, the pattern
specified for a social security number may be "NNN-NN-NNNN" where
N is one of 0,1,2, ...9.

allowable values: fixed-length character string.

sde_domain_description
explanation: a description of the standard domain.

allowable values: freeform variable-length text string.

The values_<sde_domain_name> Metadata Table

This table records the allowable values for enumerated types. There is one table
for every enumerated type domain (whose name is qualified by the

27

sde_domain_name). Each table contains one row for each allowable value. The
columns in this table are listed below.

standard_value

explanation: a legal and acceptable value.

allowable values: fixed-length character string.

expansion

explanation: an expanded form of the standard_value if it is
abbreviated or encoded.

allowable values: freeform variable-length text string.

description

explanation: a description of the meaning of the value.

allowable values: freeform variable-length text string.

The sde_numeric_domain_range Metadata Table

This is a single table to express ranges for all numeric fields that are recorded as
standard data elements. All numeric fields are treated as belonging to a floating-
point domain. This table contains one row for each numeric domain
corresponding to a standard data element. The columns in this table are listed
below.

sde_domain_name

explanation: the standard name given to a domain; corresponds to
sde_domain_name in the standard_data_element metadata
table.

allowable values: floating-point number.

sde_min
explanation: the minimum value allowed.

allowable values: floating-point number.

sde_max
explanation: the maximum value allowed.

allowable values: floating-point number.

28

Appendix B

RMMS Data Dictionary Tables

The names of the tables and the corresponding columns that comprise the Data
Dictionary are listed below. A detailed discussion of each table and its attributes
follows the list of tables. One set of Data Dictionary tables exists for each
INGRES database. These tables are stored in the same database as the data tables
and are prefixed with "md_" so that users can distinguish those tables that
contain RMMS metadata from those data tables that contain column values.

md_table_extend metadata table
table_name
unique_id
table_source
description

md_column_extend metadata table
table_name
column_name
column_source
co1umn_units
units_translation
init_rand_version
composite_datatype_flag
dependency_f1ag
column_description
sde_name
valid_pattern
sub_domain_class_name
sub_domain_category
sub_domain_class_description

md_value_enum metadata table
sub_domain_clas s_name
column_value
standard_value
description

md_nume r i c_doma i n_r ang e metadata table
sub_doma in_name
sub_doma in_min
sub_doma in_max

md_dependencies metadata table
dependent_t able
dependent_column
independent_table
independent_column
description

29

ind_links metadata table
table_namel
column_listl
table_name2
column_list2
cardinality

md_table_history metadata table
init_rand_version
time_stamp
table_change_type
table_change_source
t able_change_authori z at i on
table_change_processor
table_change_description

md_column_history metadata table
init_rand_version
time_stamp
column_change_type
column_change_source
column_change_authorization
column_change_processor
column_change_description

md_value_history_<data table name> metadata table
init_rand_version
time_stamp
value_change_type
value_change_source
value_change_authorization
value_change_processor
value_change_description

md_range_statistics metadata table
table_name
column_name
minimum
maximum
average
median
standard_deviation
null_count
sum
percentile_lst
percentile_99th
quartile_25th
quartile_75th

md_enum_statistics metadata table
table_name
column_name
unique_value
count
percent

30

A discussion of each Data Dictionary metadata table now follows.

The md_table_extend Metadata Table

This table contains general information about data tables in the INGRES
database. As discussed above, it has the suffix "_extend" because INGRES
system tables also contain information about tables in the database including
such information as number of rows, storage structure, and column names. This
table contains one row for every data table in the database. The columns in this
table are listed below.

table_name
explanation: the name of the table.

allowable values: fixed-length character string.

unique_id
explanation: columns in the data table that are unique and may be
used as keys.

allowable values: freeform variable-length text string (which is machine
readable).

table_source

explanation: records the source of the table; if the table was derived,
then this includes by whom, when, and why it was derived.

allowable values: freeform variable-length text string.

description

explanation: a description of the contents of the table.

allowable values: freeform variable-length text string.

The md_column_extendMetadata Table

This table contains general information about the columns in data tables in the
database. This table contains one row for every column, for every data table in
the database. This table may contain multiple entries for an sde_name. The
columns in this table are listed below.

31

table_name
explanation: the name of the table containing this column.

allowable values: fixed-length character string.

column_name

explanation: the name of the column.

allowable values: fixed-length character string.

column_source

explanation: documents the source of the column for derived
databases.

allowable values: freeform variable-length text string.

column_units
explanation: a units metric, such as, feet, meters, etc.

allowable values: fixed-length character string.

units_translation

explanation: a procedure for converting units to and from the
standard metric; if this value is prefixed by "PROC:", then the value is
regarded as a specific software subroutine to be applied for
translation.

allowable values: freeform variable-length text string.

init_rand_version

explanation: version of the database in which this column was
initiated or originated.

allowable values: {"1.0" "1.1" ... "l.n" ... "m.n"}.

composite_datatype_flag

explanation: indicates whether this column is a composite datatype.

allowable values: {"y" "n"}.

dependency_flag

explanation: indicates whether this column is dependent on any other
columns in this database.

allowable values: {"y" "n"}.

column_description

explanation: a description of the meaning of the column.

allowable values: freeform variable-length text string.

32

sde_name
explanation: the column's standard data element name; corresponds to
sde_name in the standard_data_element metadata table.

allowable values: fixed-length character string.

valid_pattern

explanation: if the sub_domain_category is "pattern," then this
field records the pattern specification.

allowable values: fixed-length character string.

sub_doma in_cla ss_name

explanation: name of the subdomain class that is acceptable for this
column.

allowable values: fixed-length character string.

sub_domain_category
explanation: the type of the domain, which may be an enumerated list
of character strings, a patterned string, or a numeric type.

allowable values: {"enum" "pattern" "num"}.

sub_domain_class_description

explanation: description of the subdomain class.

allowable values: fixed-length character string.

Note that the fields column_type (the datatype of the column) and
column_length (the length of the field) are important pieces of metadata but
are not included in this metadata table because they can be found in the INGRES
system tables.

The md_value_enumMetadata Table

This table contains the valid enumerated lists that can be used as allowable
values for columns in data tables whose domain is an enumerated type. This
table contains one row for each value of each subdomain of type "enum" that is
represented in the database. The columns in this table are listed below.

sub_domain_c1ass_name

explanation: name of the subdomain class that is acceptable for this
column.

allowable values: fixed-length character string.

co1umn_va1ue
explanation: the value found in the column.

allowable values: fixed-length character string.

33

standard_value
explanation: this is the standard value established in the sde_domain
metadata table in the Data Encyclopedia database.

allowable values: fixed-length character string.

description

explanation: description of the mapping between the columns
column_value and standard_value.

allowable values: freeform variable-length text string.

The md_numeric_domain_range Metadata Table

This table contains the valid ranges that can be used as allowable values for
columns in the data tables whose domain is a numeric range. Note that all
numeric fields are treated as belonging to a floating-point domain. This table
contains one row for each numeric subdomain. The columns in this table are

listed below.

sub_domain_name

explanation: name of the subdomain that is acceptable for this column.

allowable values: fixed-length character string.

sub_doma in_min

explanation: the minimum acceptable value in this subdomain.

allowable values: floating-point number.

sub_doma in_max

explanation: the maximum acceptable value in this subdomain.

allowable values: floating-point number.

The md_dependencies Metadata Table

This table contains entries describing dependencies between columns. The
dependencies may be between columns in the same table or in different tables.
This table may contain zero, one, or more entries for each row in the
md_column_extend metadata table. The columns in this table are listed below.

dependent_table

explanation: the table name where the dependent column is found.

allowable values: fixed-length character string.

34

dependent_column
explanation: the name of the dependent column.

allowable values: fixed-length character string.

independent_table

explanation: the table name where the independent column is found.

allowable values: fixed-length character string.

independent_column

explanation: the name of the independent column.

allowable values: fixed-length character string.

description

explanation: a description of the dependency.

allowable values: freeform variable-length text string.

The md_links Metadata Table

This table records the "foreign key" to "key" connections between different
tables in the database. This information is necessary for determining how you

join two tables. This table contains one row for each pair of data tables that are
related through a "foreign key" to "key" column. The columns in this table are

listed below.

table_namel

explanation: the table name of one table participating in the link.

allowable values: fixed-length character string.

column_listl

explanation: one or more column names that form a key in
table_namel (which is machine readable).

allowable values: freeform variable-length text string.

table_name2

explanation: the table name of the other table participating in the link.

allowable values: fixed-length character string.

column_list2
explanation: one or more column names that form a key in
table_name2 (which is machine readable).

allowable values: freeform variable-length text string.

35

cardinality

explanation: indicates the number of rows in table_namel that
correspond to one or more rows in table_name2.

allowable values: {"1-1" "1-N" "M-N"}.

The md_table_historyMetadata Table

This table contains an account of all data table deletions, additions, or name
changes. The purpose of this metadata is to record changes to the database that
occur at the database level, that is, the addition or deletion of data tables.
Because this metadata table maintains information about a data table, its format
should correspond closely to the format of the md_table_extend metadata
table. Therefore, an entry in the md_table_history table contains the same
columns as in the md_table_extend table (excluding description) AND the
additional columns listed below.

init_rand_version

explanation: version of the database in which this column was
initiated or originated.

allowable values: {"1.0" "1.1" ... "l.n" ... "m.n"}.

time_stamp

explanation: automatic time stamp recording when the change was
made.

allowable values: INGRES date type.

t ab1e_change_type
explanation: indicates the type of change made.

allowable values: {"table_delete" "table_add" "table_chg_name"}.

table_change_source

explanation: indicates where the new changed data came from.

allowable values: freeform variable-length text string.

table_change_authorization

explanation: name of person or agency who authorized the change.

allowable values: fixed-length character string.

table_change_processor

explanation: name of person who executed the change in INGRES.

allowable values: fixed-length character string.

36

table_change_description
explanation: description of reason the change was made.

allowable values: freeform variable-length text string.

The md_column_historyMetadata Table

This table contains an account of all column deletions, additions, or format changes.
The purpose of this metadata table is to record changes to the database that occur at
the table or schema level—that is, additions, deletions, or changes to the column
formats such as changing the data type of a column (e.g., from integer to float) or
changing the length of a column (e.g., from 20 characters to 30 characters). Because

this metadata table maintains information about columns in a data table, its format
should correspond closely to the format of the md_column_extend metadata table.

Therefore, an entry in the md_column_history table contains the same columns
as in the md_column_extend table (excluding description) AND the additional

columns listed below.

init_rand_version

explanation: version of the database in which this column was
initiated or originated.

allowable values: {"1.0" "1.1" ... "l.n"... "m.n"}.

time_stamp
explanation: automatic time stamp record of when the change was
made.

allowable values: INGRES date type.

column_change_type

explanation: indicates the type of change made.

allowable values: {"delete" "add" "chgjen" "chg_type"}.

column_change_source

explanation: indicates where the changed data came from.

allowable values: freeform variable-length text string.

column_change_authorization

explanation: name of person or agency who authorized the change.

allowable values: fixed-length character string.

column_change_processor

explanation: name of person who executed the change in INGRES.

allowable values: fixed-length character string.

37

column_change_descript ion
explanation: description of reason the change was made.

allowable values: freeform variable-length text string.

The md_value_history_<data table name> Metadata Table

This set of tables contains an account of all changes to a column value. The
purpose of these metadata tables is to record changes to the database that occur
at the column level, i.e., modifications to data values. In the discussion above
describing the md_table_history and md_column_history metadata tables,
note that there is one of each of these tables for each INGRES database.
However, recording the changes made to values of specific columns requires
metadata corresponding to the format of the specific data table. Therefore, one of
these value history metadata tables exists for each data table in the database.
Each table contains one row for each value change. To distinguish this metadata
table from the data table, we prefix the metadata table name with
"md_value_history_". Therefore, an entry in the
md_value_history_<data table name> table contains the same columns as in
the <data table name> table AND the additional columns listed below.

This table mimics the format of the data table, but stores only the old values of
columns (along with some documentation explaining the change). In this way,
RMMS is recording a complete history of the values of all versions of the
database. In cases where the schema is changed (and therefore is recorded in the
md_column_history table above), the change will also take effect in the
md_value_history_<data table name>. For example, if a column data type
changes, the md_value_history_<data table name> table is recreated keeping
the old column definition, but also adding a column with the new definition.
The name that RMMS assigns to this new column is yet to be determined.

init_rand_version

explanation: version of the database in which this column was
initiated or originated.

allowable values: {"1.0" "1.1" ... "l.n" ... "m.n"}.

time_stamp
explanation: automatic time stamp recording when the change was
made.

allowable values: INGRES date type.

38

value_change_type
explanation: indicates the type of change made.

allowable values: {"row_insert" "row_delete" "row_modify"
"column_delete" "column_add" "column_chg_length"
"column_chg_type"}.

value_change_source

explanation: indicates where the changed data came from.

allowable values: freeform variable-length text string.

value_change_authorization

explanation: name of person or agency who authorized the change.

allowable values: fixed-length character string.

value_change_processor

explanation: name of person who executed the change in INGRES.

allowable values: fixed-length character string.

value_change_description
explanation: description of reason the change was made.

allowable values: freeform variable-length text string.

The md_range_statistics and md_enum_stat±stics
Metadata Tables

These tables contain useful statistics on the values stored in data tables. Because
the statistics gathered depend on whether the values of a column are within a
numeric range or are an element of an enumerated type, RMMS supports two
different types of statistics metadata tables. These tables are generated
automatically based on values found in the data tables; therefore, in the
discussion below "allowable values" has been changed to "possible values." For
range statistics, each table contains one row for each column of a data table for
which statistics are recorded. For enumerate lists, each table contains one row
for each value of each row for which statistics are recorded. The columns in each
table are listed below.

The md_range_statistics Metadata Table

table_name
explanation: the name of the table containing this column.

possible values: fixed-length character string.

39

column_name
explanation: the name of the column corresponding to these statistics.

possible values: fixed-length character string.

minimum

explanation: the minimum value recorded in the column.

possible values: same allowable values and datatype as the column.

maximum
explanation: the maximum value recorded in the column.

possible values: same allowable values and datatype as the column.

average
explanation: the average of the values recorded in this column.

possible values: floating-point number.

median
explanation: the median value recorded in this column.

possible values: same allowable values and datatype as the column.

standard_deviation

explanation: the standard deviation of the values recorded in this
column.

possible values: floating-point number.

null_count
explanation: the number of null values recorded in this column.

possible values: integer.

sum

explanation: the sum of the values recorded in this column.

possible values: same allowable values and datatype as the column.

percentile_lst

explanation: value of this column at the 1st percentile.

possible values: same allowable values and datatype as the column.

percentile_99th
explanation: value of this column at the 99th percentile.

possible values: same allowable values and datatype as the column.

40

quartile_25th
explanation: value of this column at the 25th percentile.

possible values: same allowable values and datatype as the column.

quartile_75th

explanation: value of this column at the 75th percentile.

possible values: same allowable values and datatype as the column.

The md_enum_st at ist ics Metadata Table

table_name
explanation: the name of the table containing this column.

possible values: fixed-length character string.

column_name

explanation: the name of the column corresponding to these statistics.

possible values: fixed-length character string.

unique_value
explanation: value of the column for which statistics are recorded.

possible values: same allowable values and datatype as the column.

count
explanation: number of rows with the given value for this column.

possible values: integer.

percent
explanation: percentage of rows with the given value for this column.

possible values: floating-point number.

41

References

Adiba, M., and N. Gui. Quang (August 1986). "Historical Multi-Media
Databases." Proceedings of the Twelfth International Conference on Very Large
Data Bases, Kyoto, pp. 63-70.

Bruce, T. (1991). Designing Quality Databases with IDEF1X Information Models,
Dorset House Publishing, New York.

Dadam, P., V. Lum, and H. D. Werner (August 1984). "Integration of Time
Versions into a Relational Database System." Proceedings of the Tenth
International Conference on Very Large Data Bases, Singapore, pp. 509-522.

Department of Defense. 8320.1-M-l. (1992). "Standard Data Element
Development, Approval, and Maintenance Procedures," Department of
Defense, Office of the Assistant Secretary of Defense (Command, Control,
Communications, and Intelligence).

Dolk, D., and R. Kirsch (January 1987). "A Relational Information Resource
Dictionary System," Communications of the ACM, Vol. 30, No. 1, pp. 48-61.

French, J. C, A. K. Jones, and J. L. Pfaltz (1990). "A Summary of the NSF
Scientific Database Workshop." Data Engineering, Vol. 13, No. 3, pp. 55-62.

Goldfine, A. (October 1985). "The Information Resource Dictionary System,"
Proceedings of the Fourth International Conference Entity-Relationship Approach,
Chicago, pp. 114-122.

Goldfine, A., and P. Konig Qanuary 1988). "A Technical Overview of the
Information Resource Dictionary System (Second Edition)," NBSIR 88-3700,
U.S. Department of Commerce.

Jones, M. (November 1991). "Brave New World: A Vision of IRDS," Database
Programming and Design.

Kerschberg, L., D. Marchand, and A. Sen (1983). "Information System
Integration: A Metadata Management Approach," Proceedings of the Fourth
International Conference on Information Systems, Houston, pp. 223-239.

Kossman, R. (April 1987). "An Active Information Resource Dictionary,"
Proceedings of INGRES User Association Meeting, San Francisco.

Mark, L., and N. Roussopoulos (December 1986). "Metadata Management,"
Computer, Vol. 19, No. 12, pp. 26-35.

McCarthy, J. L. (September 1982). "Metadata Management for Large Statistical
Databases," Proceedings of the Eighth International Conference on Very Large Data
Bases, Los Angeles, pp. 234-243.

42

Navathe, S., and L. Kerschberg (January 1986). "Role of Dictionaries in
Information Resource Management," Information and Management, Vol. 10,
No. 1, pp. 21-46.

OpenWindows Developer's Guide 1.1 User's Manual. (June 1990). Report Number
800-5381-10, Sun Microsystems, Inc., Mountain View, CA.

Segev, A., and A. Shoshani (1987). "Logical Modeling of Temporal Data."
SIGMOD Quarterly.

Snodgrass, R., and I. Ahn (1986). "Temporal Databases." Computer, Vol. 19,
No. 9.

